ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Периметр треугольника ABC равен 8. В треугольник вписана окружность и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB. ![]() |
Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1024]
Окружность радиуса R с центром в точке O проходит через вершины A и B треугольника ABC, пересекает отрезок BC в точке M и касается прямой AC в точке A. Найдите CM, зная, что ∠ACO = α, ∠MAB = β.
Даны две окружности. Их общие внутренние касательные взаимно перпендикулярны. Хорды, соединяющие точки касания, равны 3 и 5. Найдите расстояние между центрами окружностей.
Пусть r — радиус окружности, вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c. Докажите, что
r =
Пусть r — радиус окружности, касающейся гипотенузы и
продолжения катетов прямоугольного треугольника со сторонами a,
b, c. Докажите, что
r =
Периметр треугольника ABC равен 8. В треугольник вписана окружность и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB.
Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1024] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |