ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Трапеция ABCD с основаниями BC = 2 и AD = 10 такова, что в неё можно вписать окружность и около неё можно описать окружность. Определите, где находится центр описанной окружности, т.е. расположен он внутри или вне её, или же на одной из сторон трапеции ABCD. Найдите также отношение радиусов описанной и вписанной окружностей.

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 448]      



Задача 52781

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Трапеция ABCD с основаниями BC = 2 и AD = 10 такова, что в неё можно вписать окружность и около неё можно описать окружность. Определите, где находится центр описанной окружности, т.е. расположен он внутри или вне её, или же на одной из сторон трапеции ABCD. Найдите также отношение радиусов описанной и вписанной окружностей.

Прислать комментарий     Решение


Задача 53286

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Трапеция ABCD с основаниями BC = 1 и AD = 3 такова, что в неё можно вписать окружность и вокруг неё можно описать окружность. Определите, где находится центр описанной вокруг трапеции ABCD окружности, т.е. расположен ли он внутри, или вне, или же на одной из сторон трапеции ABCD. Найдите также площадь описанного круга.

Прислать комментарий     Решение


Задача 54358

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$ABC = 60o. Окружность касается прямой AD в точке A, центр окружности лежит внутри ромба. Касательные к окружности, проведённые из точки C, перпендикулярны. Найдите отношение периметра ромба к длине окружности.

Прислать комментарий     Решение


Задача 54359

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$BCD = 120o. Окружность касается прямой BC в точке C, центр окружности лежит вне ромба. Касательные к окружности, проведённые из точки A, перпендикулярны. Найдите отношение радиуса окружности к стороне ромба.

Прислать комментарий     Решение


Задача 54717

 [Теорема Стюарта]
Темы:   [ Теорема Стюарта ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Точка D расположена на стороне BC треугольника ABC. Докажите, что AB2 . DC + AC2 . BD - AD2 . BC = BC . DC . BD.

Прислать комментарий     Решение


Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .