ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника.
Найдите радиус окружности, если высота, опущенная на основание треугольника, равна 3.

   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 512]      



Задача 52791

Темы:   [ Признаки и свойства касательной ]
[ Окружность, вписанная в угол ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника.
Найдите радиус окружности, если высота, опущенная на основание треугольника, равна 3.

Прислать комментарий     Решение

Задача 61335

 [Метод Архимеда]
Темы:   [ Окружности (прочее) ]
[ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10,11

Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
   а) Найдите P4, p4, P6 и p6.
   б) Докажите, что справедливы следующие рекуррентные соотношения:    P2n = ,        p2n =         (n ≥ 3).
   в) Найдите P96 и p96. Докажите неравенства   310/71 < π < 31/7.

Прислать комментарий     Решение

Задача 66655

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что

а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке;

б) если $CN$ – высота, то $ST$ проходит через середину $ML$.

Прислать комментарий     Решение

Задача 116483

Темы:   [ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 7,8,9

В трапеции ABCD основание AD в четыре раза больше чем BC. Прямая, проходящая через середину диагонали BD и параллельная AB, пересекает сторону CD в точке K. Найдите отношение DK : KC.

Прислать комментарий     Решение

Задача 52356

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .