ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В остроугольном треугольнике PQR (PQ > QR) проведены высоты PT и RS ; QN — диаметр окружности, описанной около треугольника PQR . Известно, что острый угол между высотами PT и RS равен α , PR = a . Найдите площадь четырёхугольника NSQT . Решение |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 211]
В треугольнике KLM угол L тупой, а сторона KM равна 6. Найдите радиус описанной около треугольника KLM окружности, если известно, что на этой окружности лежит центр окружности, проходящей через вершины K, M и точку пересечения высот треугольника KLM.
Сторона AD вписанного четырёхугольника ABCD является диаметром описанной окружности, M — точка пересечения диагоналей, P — проекция M на AD. Докажите, что M — центр окружности, вписанной в треугольник BCP.
В параллелограмме ABCD острый угол BAD равен . Пусть O1, O2, O3, O4 — центры окружностей, описанных соответственно около треугольников DAB, DAC, DBC, ABC. Найдите отношение площади четырёхугольника O1O2O3O4 к площади параллелограмма ABCD.
Вписанная окружность касается сторон AC и BC треугольника ABC в точках B1 и A1 соответственно. Докажите, что если AC > BC, то AA1 > BB1.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|