ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Медиана треугольника делит пополам его периметр. Докажите, что треугольник равнобедренный.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 53397

Темы:   [ Периметр треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Медиана треугольника делит пополам его периметр. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 65219

Темы:   [ Периметр треугольника ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 7,8

На сторонах угла ABC отмечены точки М и K так, что углы BMC и BKA равны,  BM = BK,  AB = 15,  BK = 8,  CM = 9.
Найдите периметр треугольника СOK, где O – точка пересечения прямых AK и СМ.

Прислать комментарий     Решение

Задача 53547

Темы:   [ Периметр треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Параллелограмм с периметром, равным 44, разделен диагоналями на четыре треугольника. Разность между периметрами двух смежных треугольников
равна 6. Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 86494

Темы:   [ Периметр треугольника ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8

Отрезки АС и BD пересекаются в точке О. Периметр треугольника АВС равен периметру треугольника АВD, а периметр треугольника ACD равен периметру треугольника BCD. Найдите длину АО, если ВО = 10 см.

Прислать комментарий     Решение

Задача 102724

Тема:   [ Периметр треугольника ]
Сложность: 3
Классы: 8,9

На стороне AC треугольника ABC отметили точку E. Известно, что периметр треугольника ABC равен 25 см, периметр треугольника ABE равен 15 см, а периметр треугольника BCE – 17 см. Найдите длину отрезка BE.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .