ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
  а) по 5 шахматистов;
  б) произвольное равное число шахматистов.

Вниз   Решение


На сторонах угла ABC, равного 120o, отложены отрезки AB = BC = 4. Через точки A, B, C проведена окружность. Найдите её радиус.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника делят его на четыре треугольника. Известно, что радиусы окружностей, описанных около этих четырёх треугольников, равны между собой. Докажите, что этот четырёхугольник — ромб.

Вверх   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 501]      



Задача 54359

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$BCD = 120o. Окружность касается прямой BC в точке C, центр окружности лежит вне ромба. Касательные к окружности, проведённые из точки A, перпендикулярны. Найдите отношение радиуса окружности к стороне ромба.

Прислать комментарий     Решение


Задача 53575

Темы:   [ Ромбы. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Диагонали выпуклого четырёхугольника делят его на четыре треугольника. Известно, что радиусы окружностей, описанных около этих четырёх треугольников, равны между собой. Докажите, что этот четырёхугольник — ромб.

Прислать комментарий     Решение


Задача 56507

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α.

Прислать комментарий     Решение

Задача 64973

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9,10

Пользуясь только линейкой, разделите сторону квадратного стола на n равных частей. Линии можно проводить только на поверхности стола.

Прислать комментарий     Решение

Задача 65646

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Необычные построения (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9,10

Дан квадратный лист бумаги со стороной 2016. Можно ли, согнув его не более десяти раз, построить отрезок длины 1?

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .