ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали выпуклого четырёхугольника делят его на четыре треугольника. Известно, что радиусы окружностей, описанных около этих четырёх треугольников, равны между собой. Докажите, что этот четырёхугольник — ромб.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 173]      



Задача 54359

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$BCD = 120o. Окружность касается прямой BC в точке C, центр окружности лежит вне ромба. Касательные к окружности, проведённые из точки A, перпендикулярны. Найдите отношение радиуса окружности к стороне ромба.

Прислать комментарий     Решение


Задача 53575

Темы:   [ Ромбы. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Диагонали выпуклого четырёхугольника делят его на четыре треугольника. Известно, что радиусы окружностей, описанных около этих четырёх треугольников, равны между собой. Докажите, что этот четырёхугольник — ромб.

Прислать комментарий     Решение


Задача 56507

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α.

Прислать комментарий     Решение

Задача 67232

Темы:   [ Ромбы. Признаки и свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Высоты параллелограмма больше 1. Обязательно ли в него можно поместить единичный квадрат?
Прислать комментарий     Решение


Задача 78531

Темы:   [ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 7,8,9

Через противоположные вершины A и C четырёхугольника ABCD проведена окружность, пересекающая стороны AB, BC, CD и AD соответственно в точках M, N, P и Q. Известно, что BM = BN = DP = DQ = R , где R — радиус данной окружности. Доказать, что в таком случае сумма углов B и D данного четырёхугольника равна 120o.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .