ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что биссектрисы внешних углов параллелограмма при пересечении образуют прямоугольник, диагональ которого равна сумме двух соседних сторон параллелограмма. Решение |
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 501]
В ромбе ABCD из вершины D на сторону BC опущен перпендикуляр DK. Найдите сторону ромба, если AC = 2, AK = .
Точки A и B высекают на окружности с центром O дугу величиной 60o. На этой дуге взята точка M. Докажите, что прямая, проходящая через середины отрезков MA и OB, перпендикулярна прямой, проходящей через середины отрезков MB и OA.
Докажите, что биссектрисы внешних углов параллелограмма при пересечении образуют прямоугольник, диагональ которого равна сумме двух соседних сторон параллелограмма.
В ромбе ABCD точка Q делит сторону BC в отношении 1 : 3, считая от вершины B, а точка E — середина стороны AB. Известно, что медиана CF треугольника CEQ равна 2, а EQ = . Найдите радиус окружности, вписанной в ромб ABCD.
Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали AC и пересекает сторону AB в точке M. Найдите отношение AM : AB, если AC = 3BD.
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|