ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 501]      



Задача 67116

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные проекции ]
[ Вписанные и описанные многоугольники ]
Сложность: 4-
Классы: 8,9,10,11

На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
Прислать комментарий     Решение


Задача 78232

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 10,11

Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.
Прислать комментарий     Решение


Задача 108042

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ромбы. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Автор: Фомин Д.

Четырёхугольник ABCD – ромб. На стороне BC взята точка P. Через точки A, B и P проведена окружность, которая пересекается с прямой BD ещё раз в точке Q. Через точки C, P и Q проведена окружность, которая пересекается с BD ещё раз в точке R. Докажите, что точки A, R и P лежат на одной прямой.

Прислать комментарий     Решение

Задача 108102

Темы:   [ Против большей стороны лежит больший угол ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Автор: Фольклор

Дан квадрат, внутри которого лежит точка O. Докажите, что сумма углов OAB, OBC, OCD и ODA отличается от 180° не больше чем на 45°.

Прислать комментарий     Решение

Задача 108595

Темы:   [ Перегруппировка площадей ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Автор: Фольклор

Внутри квадрата ABCD лежит квадрат PQRS. Отрезки AP, BQ, CR и DS не пересекают друг друга и стороны квадрата PQRS.
Докажите, что сумма площадей четырёхугольников ABQP и CDSR равна сумме площадей четырёхугольников BCRQ и DAPS.

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .