Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 290]
|
|
Сложность: 3+ Классы: 8,9,10
|
На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Докажите, что AP = BP + CP.
На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в
точке Q. Докажите, что 1/PQ = 1/PB + 1/PC.
Докажите, что сумма квадратов расстояний от точки, лежащей на окружности,
до вершин правильного вписанного в эту окружность треугольника есть величина постоянная, не зависящая от положения точки на окружности.
Два равносторонних треугольника ABC и CDE расположены по одну
сторону от прямой AE и имеют единственную общую точку C. Пусть M, N и K – середины отрезков BD, AC и CE соответственно. Докажите, что треугольник MNK равносторонний.
На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 290]