ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На основании AB равнобедренного треугольника ABC взята точка D, причём BD - AD = 4. Найдите расстояние между точками, в которых окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD. Решение |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 211]
Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)
На основании AB равнобедренного треугольника ABC взята точка D, причём BD - AD = 4. Найдите расстояние между точками, в которых окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD.
Радиус окружности, описанной около остроугольного треугольника ABC, равен 1. Известно, что на этой окружности лежит центр другой окружности, проходящей через вершины A, C и точку пересечения высот треугольника ABC. Найдите AC.
С помощью циркуля и линейки постройте треугольник по центрам описанной, вписанной и одной из вневписанных окружностей.
Докажите, что площадь прямоугольного треугольника равна произведению длин отрезков, на которые гипотенуза делится точкой касания с вписанной окружностью.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|