ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD.
Докажите, что четырёхугольник с вершинами в точках пересечения прямых AL, BM, CN и DK – параллелограмм.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 402]      



Задача 54075

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Постройте параллелограмм по двум соседним сторонам и углу между ними.

Прислать комментарий     Решение


Задача 54077

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Периметр параллелограмма равен 12, а разность периметров треугольников BOC и COD равна 2. Найдите стороны параллелограмма.

Прислать комментарий     Решение


Задача 107674

Темы:   [ Признаки и свойства параллелограмма ]
[ Наименьший или наибольший угол ]
[ Общие четырехугольники ]
Сложность: 2+
Классы: 7,8,9

Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Прислать комментарий     Решение


Задача 54068

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD.
Докажите, что четырёхугольник с вершинами в точках пересечения прямых AL, BM, CN и DK – параллелограмм.

Прислать комментарий     Решение

Задача 54071

Темы:   [ Признаки и свойства параллелограмма ]
[ Параллелограммы ]
Сложность: 3-
Классы: 8,9

Точки M и N — середины противоположных сторон сторон BC и AD параллелограмма ABCD. Докажите, что четырёхугольник AMCN — параллеллограмм.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .