ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ромбе ABCD угол $ \angle$BCD = 120o. Окружность касается прямой BC в точке C, центр окружности лежит вне ромба. Касательные к окружности, проведённые из точки A, перпендикулярны. Найдите отношение радиуса окружности к стороне ромба.

   Решение

Задачи

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 2247]      



Задача 53709

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Пересекающиеся окружности ]
Сложность: 4
Классы: 8,9

Докажите, что четыре точки пересечения окружностей, построенных на сторонах вписанного четырёхугольника как на хордах, и отличные от вершин этого четырёхугольника, лежат на одной окружности.

Прислать комментарий     Решение


Задача 54276

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Удвоение медианы ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

Диагонали трапеции равны 3 и 5, а отрезок, соединяющий середины оснований, равен 2. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54358

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$ABC = 60o. Окружность касается прямой AD в точке A, центр окружности лежит внутри ромба. Касательные к окружности, проведённые из точки C, перпендикулярны. Найдите отношение периметра ромба к длине окружности.

Прислать комментарий     Решение


Задача 54359

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В ромбе ABCD угол $ \angle$BCD = 120o. Окружность касается прямой BC в точке C, центр окружности лежит вне ромба. Касательные к окружности, проведённые из точки A, перпендикулярны. Найдите отношение радиуса окружности к стороне ромба.

Прислать комментарий     Решение


Задача 54366

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В равнобедренной трапеции ABCD углы при основании AD равны 30o, диагональ AC является биссектрисой угла BAD. Биссектриса угла BCD пересекает основание AD в точке M, а отрезок BM пересекает диагональ AC в точке N. Найдите площадь треугольника ANM, если площадь трапеции ABCD равна 2 + $ \sqrt{3}$.

Прислать комментарий     Решение


Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .