ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В основании пирамиды SABC лежит треугольник ABC , у которого AB=18 , BC=22 , а sin ABC = . На сторонах треугольника ABC как на диаметрах построены три сферы, пересекающиеся в точке O . Точка O является центром четвёртой сферы, причём вершина пирамиды S есть точка касания этой сферы с некоторой плоскостью, параллельной плоскости основания ABC . Площадь части четвёртой сферы, которая заключена внутри трёхгранного угла, образованного лучами OA , OB и OC , равна 6π . Найдите объём пирамиды SABC .

Вниз   Решение


Докажите, что общий перпендикуляр двух скрещивающихся прямых есть наименьшее из расстояний между точками этих прямых.

ВверхВниз   Решение


Существует ли тетраэдр, высоты которого равны 1, 2, 3 и 6?

ВверхВниз   Решение


Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.

ВверхВниз   Решение


У выпуклых четырёхугольников ABCD и A'B'C'D' соответственные стороны равны. Доказать, что если $ \angle$A > $ \angle$A', то $ \angle$B < $ \angle$B', $ \angle$C > $ \angle$C' и $ \angle$D < $ \angle$D'.

ВверхВниз   Решение


Докажите, что сумма углов пространственного четырёхугольника не превосходит 360o .

ВверхВниз   Решение


В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 79466

Темы:   [ Неравенства с площадями ]
[ Свойства сечений ]
[ Перегруппировка площадей ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 10,11

Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.

Прислать комментарий     Решение

Задача 98420

 [Багаж в Московском метрополитене]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Прямоугольные параллелепипеды ]
[ Проектирование помогает решить задачу ]
[ Боковая поверхность параллелепипеда ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 10,11

Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

Прислать комментарий     Решение

Задача 111768

Темы:   [ Неравенства с объемами ]
[ Неравенства с площадями ]
[ Объем тетраэдра и пирамиды ]
[ Сфера, вписанная в тетраэдр ]
[ Объем параллелепипеда ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4+
Классы: 10,11

Назовем многогранник хорошим, если его объем (измеренный в м3 ) численно равен площади его поверхности (измеренной в м2 ). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда?
Прислать комментарий     Решение


Задача 79626

Темы:   [ Неравенства с площадями ]
[ Векторы помогают решить задачу ]
[ Площадь и ортогональная проекция ]
[ Скалярное произведение ]
[ Тетраэдр (прочее) ]
[ Правильный тетраэдр ]
Сложность: 5
Классы: 10,11

Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1P2S2 + P3S3 + P4S4.
Прислать комментарий     Решение


Задача 54431

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перпендикуляр и наклонная ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC длина основания AC равна 2$ \sqrt{7}$, длина боковой стороны равна 8. Точка K делит высоту BD треугольника в отношении 2:3, считая от точки B. Что больше: длина CK или длина AC?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .