ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Гипотенуза AB прямоугольного треугольника ABC равна 9, катет BC равен 3. На гипотенузе взята точка M, причём AM : MB = 1 : 2. Найдите CM. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 523]
Дан произвольный треугольник ABC. Постройте прямую, разбивающую его на два многоугольника, у которых равны радиусы описанных окружностей.
Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?
Гипотенуза AB прямоугольного треугольника ABC равна 9, катет BC равен 3. На гипотенузе взята точка M, причём AM : MB = 1 : 2. Найдите CM.
Найдите периметр правильного треугольника, вписанного в окружность, если известно, что хорда этой окружности, равная 2, удалена от её центра на расстояние, равное 3.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 523] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|