ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В окружность радиуса R вписан четырёхугольник KLMN, Q — точка пересечения его диагоналей, KL = MN. Высота, опущенная из точки L на сторону KN, равна 6, KN + LM = 24, а площадь треугольника LMQ равна 2. Найдите стороны четырёхугольника и радиус окружности R.

   Решение

Задачи

Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 2247]      



Задача 54367

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь трапеции ]
Сложность: 4
Классы: 8,9

В равнобедреной трапеции ABCD углы при основании AD равны 45o, диагональ AC является биссектрисой угла BAD. Биссектриса угла BCD пересекает основание AD в точке K, а отрезок BK пересекает диагональ AC в точке Q. Найдите площадь треугольника ABQ, если площадь трапеции ABCD равна 3 + 2$ \sqrt{2}$.

Прислать комментарий     Решение


Задача 54822

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

В окружности пересекающиеся хорды AB и CD перпендикулярны, AD = m, BC = n. Найдите диаметр окружности.

Прислать комментарий     Решение


Задача 54824

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Четырёхугольник KLMN вписан в окружность радиуса R, LM = n, диагонали KM и LN перпендикулярны. Найдите KN.

Прислать комментарий     Решение


Задача 54848

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В окружность радиуса R вписан четырёхугольник KLMN, Q — точка пересечения его диагоналей, KL = MN. Высота, опущенная из точки L на сторону KN, равна 6, KN + LM = 24, а площадь треугольника LMQ равна 2. Найдите стороны четырёхугольника и радиус окружности R.

Прислать комментарий     Решение


Задача 54872

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Вокруг четырёхугольника ABCD с взаимно перпендикулярными диагоналями AC и BD описана окружность радиуса 2. Найдите сторону CD, если AB = 3.

Прислать комментарий     Решение


Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .