ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри треугольника ABC взята точка P так, что площади треугольников ABP, BCP и ACP равны. Докажите, что P — точка пересечения медиан треугольника.
![]() |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 226]
Докажите, что всякий треугольник площади 1 можно накрыть равнобедренным треугольником площади менее
Сторону AB треугольника ABC разделили на n равных частей (точки деления B0 = A, B1, B2, Bn = B), а сторону AC этого треугольника разделили на
Постройте точку M внутри данного треугольника так, что
S
Внутри треугольника ABC взята точка P так, что площади треугольников ABP, BCP и ACP равны. Докажите, что P — точка пересечения медиан треугольника.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 226] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |