ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

Вниз   Решение


На сушке в случайном порядке (как достали из стиральной машины) висит n пар носков. Двух одинаковых пар нет. Носки висят за сохнущей простыней, поэтому Рассеянный Учёный достает по одному носку на ощупь и сравнивает каждый новый носок со всеми предыдущими. Найдите математическое ожидание числа носков, снятых к моменту, когда у Учёного окажется какая-нибудь пара.

ВверхВниз   Решение


Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?

ВверхВниз   Решение


На рисунках изображены разбиения прямоугольников на квадраты. Найдите стороны этих квадратов, если в первом случае сторона наименьшего квадрата равна 1, а во втором — 2.
а)
\begin{picture}
(75,65)\put(0,0){\line(1,0){65}}\put(0,55){\line(1,0){65}}
\pu...
...e(0,1){20}}\put(65,0){\line(0,1){55}}
\put(30,20){\line(0,1){35}}
\end{picture}

б)
\begin{picture}
(55,65)\put(0,0){\line(1,0){69}}\put(0,61){\line(1,0){69}}\put(...
...(0,1){25}}\put(35,36){\line(0,1){10}}
\put(28,33){\line(0,1){28}}
\end{picture}

ВверхВниз   Решение


Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.

ВверхВниз   Решение


На плоскости проведены n окружностей так, что любые две из них пересекаются в паре точек, и никакие три не проходят через одну точку. На сколько частей делят плоскость эти окружности?

ВверхВниз   Решение


В равнобедренном треугольнике с боковой стороной, равной 4, проведена медиана к боковой стороне. Найдите основание треугольника, если медиана равна 3.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 54079

Темы:   [ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.

Прислать комментарий     Решение


Задача 53400

Темы:   [ Удвоение медианы ]
[ Равные треугольники. Признаки равенства ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM.
Найдите расстояние от полученной точки до вершин B и C, если  AB = 4,  AC = 5.

Прислать комментарий     Решение

Задача 54305

Темы:   [ Удвоение медианы ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC медиана  BD = AB,  а  ∠DBC = 90°.  Найдите угол ABD.

Прислать комментарий     Решение

Задача 115463

Темы:   [ Удвоение медианы ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

В треугольнике АВС медиана ВМ в два раза меньше стороны АВ и образует с ней угол 40°. Найдите угол АВС.

Прислать комментарий     Решение

Задача 55265

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике с боковой стороной, равной 4, проведена медиана к боковой стороне. Найдите основание треугольника, если медиана равна 3.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .