ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольник вписан параллелограмм со сторонами 3 и 5 и диагональю, равной 6. Найдите стороны треугольника, если известно, что диагонали параллелограмма параллельны боковым сторонам треугольника, а меньшая из его сторон лежит на основании треугольника.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 122]      



Задача 55091

Темы:   [ Трапеции (прочее) ]
[ Две пары подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Дана трапеция ABCD, в которой  BC = a,  AD = b.  Параллельно основаниям BC и AD проведена прямая, пересекающая сторону AB в точке P, диагональ AC в точке L, диагональ BD в точке R и сторону CD в точке Q. Известно, что  PL = LR.  Найдите PQ.

Прислать комментарий     Решение

Задача 55270

Темы:   [ Теорема о сумме квадратов диагоналей ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами 9 и 15 вписан параллелограмм так, что одна из его сторон, равная 6, лежит на третьей стороне треугольника, а диагонали параллелограмма параллельны двум данным сторонам треугольника. Найдите другую сторону параллелограмма и третью сторону треугольника.

Прислать комментарий     Решение

Задача 55271

Темы:   [ Теорема о сумме квадратов диагоналей ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В треугольник вписан параллелограмм со сторонами 3 и 5 и диагональю, равной 6. Найдите стороны треугольника, если известно, что диагонали параллелограмма параллельны боковым сторонам треугольника, а меньшая из его сторон лежит на основании треугольника.

Прислать комментарий     Решение

Задача 55542

Темы:   [ Угол между касательной и хордой ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

Касательные к описанной вокруг треугольника ABC окружности, проведённые в точках A и B, пересекаются в точке P.
Докажите, что прямая PC пересекает сторону AB в точке K, делящей её в отношении   AC² : BC².

Прислать комментарий     Решение

Задача 56458

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

а) Точки A1 и B1 делят стороны BC и AC треугольника ABC в отношениях  BA1 : A1C = 1 : p  и  AB1 : B1C = 1 : q.  В каком отношении отрезок AA1 делится отрезком BB1?

б) На сторонах BC и AC треугольника ABC взяты точки A1 и B1. Отрезки AA1 и BB1 пересекаются в точке D. Пусть a1, b1, c и d – расстояния от точек A1, B1, C и D до прямой AB. Докажите, что  1/a1 + 1/b1 = 1/c + 1/d.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .