ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан единичный куб ABCDA1B1C1D1 , M – середина BB1 . Найдите угол и расстояние между прямыми AB1 и CM . В каком отношении общий перпендикуляр этих прямых делит отрезки CM и AB1 ? ![]() ![]() Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд. ![]() ![]() ![]() Докажите, что для произвольного треугольника выполняется равенство
r =
где r — радиус вписанной окружности,
![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 109]
Окружность с центром D проходит через вершины A, B и центр O вневписанной окружности треугольника ABC , касающейся его стороны BC и продолжений сторон AB и AC. Докажите, что точки A, B, C и D лежат на одной окружности.
Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M.
Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.
Докажите, что для произвольного треугольника выполняется равенство
r =
где r — радиус вписанной окружности,
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 109] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |