ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямоугольный треугольник ABC имеет периметр 54, причём катет AC больше, чем 10. Окружность радиуса 6, центр которой лежит на катете BC, касается прямых AB и AC. Найдите площадь треугольника ABC.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 312]      



Задача 54413

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема синусов ]
[ Средняя линия трапеции ]
Сложность: 4
Классы: 8,9

В равнобедренной трапеции KLMN (ML параллельно NK) каждая из сторон KL, LM и MN равна 1. Сторона LM — меньшее основание трапеции. Точка P, середина основания KN, и точка Q, середина стороны MN, соединены отрезком прямой. Известно, что величина угол QPN равен $ \beta$. Найдите площадь трапеции KLMN.

Прислать комментарий     Решение


Задача 54414

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В параллелограмме ABCD угол C — острый, сторона AB равна 3, сторона BC равна 6. Из вершины C опущен перпендикуляр CE на продолжение стороны AB. Точка E, основание перпендикуляра CE, соединена отрезком прямой с точкой F, серединой стороны AD. Известно, что угол AEF равен $ \alpha$. Найдите площадь четырёхугольника AECD.

Прислать комментарий     Решение


Задача 54299

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

Внутри треугольника ABC взята точка K. Известно, что  AK = 1,  KC = ,  а углы AKC, ABK и KBC равны 120°, 15° и 15° соответственно. Найдите BK.

Прислать комментарий     Решение

Задача 55427

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Прямоугольный треугольник ABC имеет периметр 54, причём катет AC больше, чем 10. Окружность радиуса 6, центр которой лежит на катете BC, касается прямых AB и AC. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 55428

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Дана окружность, диаметр MN которой равен 16. На касательной к этой окружности в точке M отложен отрезок MP, длина которого больше, чем 15. Из точки P проведена вторая касательная к окружности, пересекающая прямую MN в точке Q. Найдите площадь треугольника MPQ, если его периметр равен 72.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .