ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружности радиусов r и R касаются друг друга внутренним образом. Найдите сторону правильного треугольника, у которого одна вершина находится в точке касания данных окружностей, а две другие лежат на разных данных окружностях.

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 290]      



Задача 52591

Темы:   [ Построения ]
[ Касающиеся окружности ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки впишите в данную окружность три равных окружности, которые касались бы попарно между собой и данной окружности.

Прислать комментарий     Решение


Задача 55443

Темы:   [ Касающиеся окружности ]
[ Поворот помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Окружности радиусов r и R касаются друг друга внутренним образом. Найдите сторону правильного треугольника, у которого одна вершина находится в точке касания данных окружностей, а две другие лежат на разных данных окружностях.

Прислать комментарий     Решение


Задача 108899

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касающиеся окружности ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Две окружности касаются друг друга. В большую из них вписан равносторонний треугольник, из вершин которого проведены касательные к меньшей. Докажите, что длина одной из этих касательных равна сумме длин двух других.
Прислать комментарий     Решение


Задача 109522

Темы:   [ Неравенство треугольника (прочее) ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 7,8,9

Отрезки AB и CD длины 1 пересекаются в точке O , причем AOC=60o . Докажите, что AC+BD1 .
Прислать комментарий     Решение


Задача 56500

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .