ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 290]      



Задача 78574

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Правильный (равносторонний) треугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5
Классы: 9,10

Найти геометрическое место центров равносторонних треугольников, описанных около данного произвольного треугольника.
Прислать комментарий     Решение


Задача 111668

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 8,9

На сторонах треугольника ABC внешним образом построены правильные треугольники.
Докажите, что их центры образуют правильный треугольник, причём его центр совпадает с точкой пересечения медиан треугольника ABC.

Прислать комментарий     Решение

Задача 116287

Темы:   [ Углы между биссектрисами ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 8,9

Докажите, что точки пересечения смежных триссектрис улов произвольного треугольника являются вершинами равностороннего треугольника.
Прислать комментарий     Решение


Задача 64703

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высота AH, биссектриса BL и медиана CM. Известно, что в треугольнике HLM прямая AH является высотой, а BL – биссектрисой. Докажите, что CM является в этом треугольнике медианой.

Прислать комментарий     Решение

Задача 66892

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных?

б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных?

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .