Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 290]
На сторонах AB, AC и BC правильного треугольника ABC
расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если A1B1/AB = n.
|
|
Сложность: 4- Классы: 8,9,10
|
Играют двое, ходят по очереди. Первый ставит на плоскости красную точку,
второй в ответ ставит на свободные места 10 синих точек. Затем опять первый
ставит на свободное место красную точку, второй ставит на свободные места 10
синих, и т.д. Первый считается выигравшим, если какие-то три красные точки
образуют правильный треугольник. Может ли второй ему помешать?
|
|
Сложность: 4- Классы: 7,8,9
|
В треугольнике ABC на сторонах AC и BC взяты такие точки X и Y, что ∠ABX = ∠YAC, ∠AYB = ∠BXC, XC = YB. Найдите углы
треугольника ABC.
Докажите, что внутри остроугольного треугольника существует такая точка, что
основания перпендикуляров, опущенных из неё на стороны, являются вершинами
равностороннего треугольника.
|
|
Сложность: 4- Классы: 7,8,9
|
Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°.
Страница:
<< 46 47 48 49
50 51 52 >> [Всего задач: 290]