ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом 90o, то отрезки OB и OC видны из нее под равными углами. Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 769]
Окружность касается одного из катетов равнобедренного прямоугольного треугольника и проходит через вершину противолежащего острого угла. Найдите радиус окружности, если её центр лежит на гипотенузе треугольника, а катет треугольника равен a.
На одной стороне прямого угла с вершиной в точке O взяты две точки A и B, причем OA = a, OB = b. Найдите радиус окружности, проходящей через точки A и B и касающейся другой стороны угла.
Через точку M проведены две прямые. Одна из них касается некоторой окружности в точке A, а вторая пересекает эту окружность в точках B и C, причём BC = 7 и BM = 9. Найдите AM.
Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|