ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Среди всех треугольников ABC с данным углом C и стороной AB найдите треугольник с наибольшим возможным периметром.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 109]      



Задача 55641

Темы:   [ Экстремальные свойства. Задачи на максимум и минимум. ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4+
Классы: 8,9

Среди всех треугольников ABC с данным углом C и стороной AB найдите треугольник с наибольшим возможным периметром.

Прислать комментарий     Решение


Задача 52534

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Концентрические окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности.

Прислать комментарий     Решение

Задача 64552

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3

В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.

Прислать комментарий     Решение

Задача 55412

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причём  ∠BME = 70°,  ∠ADB = 50°,
CDB = 60°.  Где расположена точка M: на диагонали AC или на её продолжении?

Прислать комментарий     Решение

Задача 98549

Темы:   [ Неопределено ]
[ Пересекающиеся окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

На плоскости даны три красные точки, три синие точки и ещё точка O, лежащая как внутри треугольника с красными вершинами, так и внутри треугольника с синими вершинами, причём расстояние от O до любой красной точки меньше расстояния от O до любой синей точки. Могут ли все красные и все синие точки лежать на одной и той же окружности?

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .