Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 109]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.
Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С.
Найдите геометрическое место точек, из которых данный отрезок
виден под данным углом.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$
был правильным треугольником, а $ABYZ$ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников $XYZ$ попадают на некоторую фиксированную окружность.
Две окружности пересекаются в точках
A и
B. Через
точку
A проведена секущая, вторично пересекающаяся с окружностями
в точках
P и
Q. Какую линию описывает середина отрезка
PQ, когда
секущая вращается вокруг точки
A?
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 109]