ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дан угол, равный $ \alpha$, с вершиной в точке O. Докажите, что композиция симметрий относительно сторон угла является поворотом вокруг точки O на угол 2$ \alpha$.

   Решение

Задачи

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 1026]      



Задача 35743

Темы:   [ Вписанные и описанные окружности ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На стороне AB квадрата ABCD построили (снаружи) равносторонний треугольник AKB. Найдите радиус окружности, описанной около треугольника CKD, если AB=1.
Прислать комментарий     Решение


Задача 55564

Темы:   [ Симметрия помогает решить задачу ]
[ Симметрия и построения ]
Сложность: 3+
Классы: 8,9

Точки A и B лежат по разные стороны от прямой l. С помощью циркуля и линейки постройте на этой прямой точку M так, чтобы прямая l делила угол AMB пополам.

Прислать комментарий     Решение


Задача 55653

Темы:   [ Композиции симметрий ]
[ Поворот (прочее) ]
Сложность: 3+
Классы: 8,9

На плоскости дан угол, равный $ \alpha$, с вершиной в точке O. Докажите, что композиция симметрий относительно сторон угла является поворотом вокруг точки O на угол 2$ \alpha$.

Прислать комментарий     Решение


Задача 55692

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте отрезок, равный и параллельный данному, так, чтобы его концы лежали на данной прямой и на данной окружности.

Прислать комментарий     Решение


Задача 55707

Темы:   [ Центральная симметрия ]
[ Свойства симметрии и центра симметрии ]
Сложность: 3+
Классы: 8,9

Докажите, что при центральной симметрии каждый луч переходит в противоположно направленный с ним луч.

Прислать комментарий     Решение


Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .