ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В трапеции ABCD угол BAD равен 60o, а меньшее основание BC равно 5. Найдите длину боковой стороны CD, если площадь трапеции равна ( AD . BC + AB . CD)/2.
![]() |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 293]
В треугольнике ABC ∠B = 2∠C. Точки P и Q на серединном перпендикуляре к стороне CB таковы, что ∠CAP = ∠PAQ = ∠QAB = ⅓ ∠A.
В выпуклом шестиугольнике ABCDEF все стороны равны, а также AD = BE = CF. Докажите, что в этот шестиугольник можно вписать окружность.
На одной стороне угла A взяты точки B, C, D, а на другой – точки E, F, G, так, что FD ⊥ BC, CG ⊥ EF, EC ⊥ BD, BF ⊥ EG. Отношение длины отрезка BE к расстоянию от точки A до центра описанной вокруг четырёхугольника BDGE окружности равно 20/17. Найдите величину угла A.
Дан треугольник ABC. Точки A1 и A2 делят на три равные части сторону AC, а точки B1 и
B2 – сторону BC.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 293] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |