ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали трапеции $ABCD$ ($BC\parallel AD$) пересекаются в точке $O$. На отрезках $BC$ и $AD$ выбраны соответственно точки $M$ и $N$. К окружности $AMC$ проведена касательная из $C$ до пересечения с лучом $NB$ в точке $P$; к окружности $BND$ из $D$ проведена касательная до пересечения с лучом $MA$ в точке $R$. Докажите, что $\angle BOP=\angle AOR$. ![]() ![]()
Две окружности радиуса R касаются в точке K. На одной из них
взята точка A, а на другой — точка B, причём
![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62]
На каждой стороне параллелограмма выбрано по точке (выбранные точки отличны от вершин параллелограмма). Точки, лежащие на соседних (имеющих общую вершину) сторонах, соединены отрезками. Докажите, что центры описанных окружностей четырёх получившихся треугольников – вершины параллелограмма.
Внутри параллелограмма ABCD выбрана точка O, причём ∠OAD = ∠OCD. Докажите, что ∠OBC = ∠ODC.
Две окружности радиуса R касаются в точке K. На одной из них
взята точка A, а на другой — точка B, причём
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 62] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |