ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 507]      



Задача 109461

Темы:   [ Вписанные и описанные многоугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Окружность, вписанная в угол ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

В выпуклом пятиугольнике ABCDE A= B= D=90o . Найдите угол ADB , если известно, что в данный пятиугольник можно вписать окружность.
Прислать комментарий     Решение


Задача 35643

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9

У правильного 5000-угольника покрашено 2001 вершина.
Докажите, что найдутся три покрашенные вершины, лежащие в вершинах равнобедренного треугольника.

Прислать комментарий     Решение

Задача 53983

Темы:   [ Пятиугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

Окружность вписана в пятиугольник со сторонами, равными a, b, c, d и e. Найдите отрезки, на которые точка касания делит сторону, равную a.

Прислать комментарий     Решение


Задача 55708

Темы:   [ Шестиугольники ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.

Прислать комментарий     Решение


Задача 66806

Тема:   [ Многоугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Saghafian M.

Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .