ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Три окружности пересекаются в одной точке
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки A', B' и C' симметричны некоторой точке P относительно сторон BC, CA и AB треугольника ABC. а) Докажите, что описанные окружности треугольников AB'C', A'BC', A'B'C и ABC имеют общую точку. б) Докажите, что описанные окружности треугольников A'BC, AB'C, ABC' и A'B'C' имеют общую точку Q. в) Пусть I, J, K и O — центры описанных окружностей треугольников A'BC, AB'C, ABC' и A'B'C'. Докажите, что QI : OI = QJ : OJ = QK : OK. Решение |
Страница: << 1 2 3 4 >> [Всего задач: 20]
В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку.
а) Докажите, что описанные окружности треугольников AB'C', A'BC', A'B'C и ABC имеют общую точку. б) Докажите, что описанные окружности треугольников A'BC, AB'C, ABC' и A'B'C' имеют общую точку Q. в) Пусть I, J, K и O — центры описанных окружностей треугольников A'BC, AB'C, ABC' и A'B'C'. Докажите, что QI : OI = QJ : OJ = QK : OK.
Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что ∠AXB = ∠A'C'B' + ∠ACB и ∠BXC = ∠B'A'C' + ∠BAC.
Страница: << 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|