ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 115873

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Прямая Симсона ]
[ Теорема Карно ]
Сложность: 5-
Классы: 8,9,10,11

Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω.

Прислать комментарий     Решение

Задача 67253

Темы:   [ Радикальная ось ]
[ Прямая Эйлера и окружность девяти точек ]
[ Прямая Симсона ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5
Классы: 9,10,11

Автор: Шатунов Л.

Дан треугольник $ABC$ и окружности $\omega_1$, $\omega_2$, $\omega_3$, $\omega_4$ с центрами $X$, $Y$, $Z$, $T$ соответственно такие, что каждая из прямых $BC$, $CA$, $AB$ высекает на них четыре равных отрезка. Докажите, что точка пересечения медиан треугольника $ABC$ делит отрезок с концами в $X$ и радикальном центре $\omega_2$, $\omega_3$, $\omega_4$ в отношении $2:1$, считая от $X$.
Прислать комментарий     Решение


Задача 56934

 [Прямая Симсона]
Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Прямая Симсона ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

Прислать комментарий     Решение

Задача 64617

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Радикальная ось ]
[ Прямая Симсона ]
Сложность: 4+
Классы: 10,11

Даны две окружности и три прямые, каждая прямая высекает на окружностях хорды равной длины. Точки пересечения прямых образуют треугольник.
Докажите, что описанная окружность этого треугольника проходит через середину отрезка между центрами данных окружностей.

Прислать комментарий     Решение

Задача 66264

Темы:   [ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса делит дугу пополам ]
[ Прямая Симсона ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .