ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что описанная окружность треугольника ABC является окружностью девяти точек для треугольника, образованного центрами вневписанных окружностей треугольника ABC. б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей. ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 67]
Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей.
Отображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия: – Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$. – Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку. Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ .
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 67] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |