Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 139]
Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2.
|
|
Сложность: 4- Классы: 9,10
|
Пусть A1 и C1 – точки касания вписанной окружности со сторонами BC и AB соответственно, а A' и C' – точки касания вневписанной окружности треугольника, вписанной в угол B, с продолжениями сторон BC и AB соответственно. Докажите, что ортоцентр H треугольника ABC лежит на A1C1 тогда и только тогда, когда прямые A'C1 и BA перпендикулярны.
|
|
Сложность: 4- Классы: 8,9,10
|
В треугольнике
ABC I и
Ia – центры вписанной и вневписанной окружностей,
A' точка описанной окружности, диаметрально противоположная
A, AA1 – высота. Докажите, что ∠
IA'Ia = ∠
IA1Ia.
|
|
Сложность: 4- Классы: 8,9,10
|
Точки Ia, Ib и Ic – центры вневписанных окружностей, касающихся сторон соответственно BC, AC и AB треугольника ABC, I — центр вписанной окружности этого треугольника. Докажите, что описанная окружность треугольника ABC проходит через середины сторон треугольника IaIbIc и середины отрезков IIa, IIb и IIc.
В треугольнике ABC точка I – центр вписанной окружности,
точки IA, IC – центры вневписанных окружностей, касающихся сторон BC и AB соответственно. Точка O – центр описанной окружности треугольника IIAIC. Докажите, что OI ⊥ AC.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 139]