ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если в выпуклом шестиугольнике каждая из трех диагоналей, соединяющих противоположные вершины, делит площадь пополам, то эти диагонали пересекаются в одной точке.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 507]      



Задача 97793

Темы:   [ Правильные многоугольники ]
[ Правильный тетраэдр ]
[ Линейные зависимости векторов ]
Сложность: 5+
Классы: 10,11

а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

Прислать комментарий     Решение

Задача 57098

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 5+
Классы: 9

Около окружности описан n-угольник  A1...Anl — произвольная касательная к окружности, не проходящая через вершины n-угольника. Пусть ai — расстояние от вершины Ai до прямой lbi — расстояние от точки касания стороны  AiAi + 1 с окружностью до прямой l. Докажите, что:
а) величина  b1...bn/(a1...an) не зависит от выбора прямой l;
б) величина  a1a3...a2m - 1/(a2a4...a2m) не зависит от выбора прямой l, если n = 2m.
Прислать комментарий     Решение


Задача 57099

Тема:   [ Вписанные и описанные многоугольники ]
Сложность: 5+
Классы: 9

Некоторые стороны выпуклого многоугольника красные, остальные синие. Сумма длин красных сторон меньше половины периметра, и нет ни одной пары соседних синих сторон. Докажите, что в этот многоугольник нельзя вписать окружность.
Прислать комментарий     Решение


Задача 111041

Темы:   [ Шестиугольники ]
[ Неравенства с медианами ]
[ Неравенства для углов треугольника ]
[ Правильный (равносторонний) треугольник ]
Сложность: 6-
Классы: 8,9,10,11

Автор: Фольклор

Каждая пара противоположных сторон данного выпуклого шестиугольника обладает следующим свойством: расстояние между серединами равно /2 умноженное на сумму их длин. Докажите, что все углы в шестиугольнике равны.
Прислать комментарий     Решение


Задача 57063

Тема:   [ Шестиугольники ]
Сложность: 6
Классы: 9

Докажите, что если в выпуклом шестиугольнике каждая из трех диагоналей, соединяющих противоположные вершины, делит площадь пополам, то эти диагонали пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .