ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Смешарики живут на берегах пруда в форме равностороннего треугольника со стороной 600 м. Крош и Бараш живут на одном берегу в 300 м друг от друга. Летом Лосяшу до Кроша идти 900 м, Барашу до Нюши – тоже 900 м. Докажите, что зимой, когда пруд замёрзнет и можно будет ходить прямо по льду, Лосяшу до Кроша снова будет идти столько же метров, сколько Барашу до Нюши.

Вниз   Решение


Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 115958

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3
Классы: 7,8,9

Диагонали AC и BD равнобедренной трапеции ABCD пересекаются в точке O; известно также, что в трапецию можно вписать окружность.
Докажите, что  ∠BOC > 60°.

Прислать комментарий     Решение

Задача 65406

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Соображения непрерывности ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Периметр выпуклого четырёхугольника равен 2004, одна из диагоналей равна 1001. Может ли вторая диагональ быть равна  а) 1;  б) 2;  в) 1001?

Прислать комментарий     Решение

Задача 73581

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Выпуклые многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 7,8,9

Сколько в выпуклом многоугольнике может быть сторон, равных наибольшей диагонали?
Прислать комментарий     Решение


Задача 57324

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Средние величины ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10

Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.

Прислать комментарий     Решение

Задача 108609

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Полуинварианты ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9

Автор: Колосов В.

На плоскости расположено такое конечное множество точек M, что никакие три точки не лежат на одной прямой. Некоторые точки соединены друг с другом отрезками так, что из каждой точки выходит не более одного отрезка. Разрешается заменить пару пересекающихся отрезков AB и CD парой противоположных сторон AC и BD четырёхугольника ACBD. В полученной системе отрезков разрешается снова произвести подобную замену, и т. д. Может ли последовательность таких замен быть бесконечной?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .