ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи См. задачу 79385 в) и г). РешениеНа прямых $BC$, $CA$, $AB$ взяты точки $A_1$ и $A_2$, $B_1$ и $B_2$, $C_1$ и $C_2$ так, что $A_1B_2\| AB$, $B_1C_2\| BC$, $C_1A_2\| CA$. Пусть $\ell_a$ — прямая, соединяющая точки пересечения прямых $BB_1$ и $CC_2$, $BB_2$ и $CC_1$; прямые $\ell_b$ и $\ell_c$ определяются аналогично. Докажите, что прямые $\ell_a$, $\ell_b$ и $\ell_c$ пересекаются в одной точке (или параллельны). Решение |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 298]
= = = k, = = =
и вообще,
Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 298] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|