ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


Вниз   Решение


На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

ВверхВниз   Решение


Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.

ВверхВниз   Решение


В четырёхугольнике ABCD  AB = BC,  ∠A = ∠B = 20°,  ∠C = 30°.  Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.

ВверхВниз   Решение


Найдите уравнение окружности девяти точек в трилинейных координатах.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 57798

Тема:   [ Трилинейные координаты ]
Сложность: 5
Классы: 9,10

Найдите трилинейные координаты точек Брокара.
Прислать комментарий     Решение


Задача 57797

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

На сторонах AD и DC выпуклого четырехугольника ABCD взяты точки P и Q так, что $ \angle$ABP = $ \angle$CBQ. Отрезки AQ и CP пересекаются в точке E. Докажите, что $ \angle$ABE = $ \angle$CBD.
Прислать комментарий     Решение


Задача 57800

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Найдите уравнения в трилинейных координатах для: а) описанной окружности; б) вписанной окружности; в) вневписанной окружности.
Прислать комментарий     Решение


Задача 57801

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Найдите уравнение окружности девяти точек в трилинейных координатах.
Прислать комментарий     Решение


Задача 57802

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

а) Докажите, что в трилинейных координатах любая окружность задается уравнением вида

(px + qy + rz)(x sin$\displaystyle \alpha$ + y sin$\displaystyle \beta$ + z sin$\displaystyle \gamma$) = yz sin$\displaystyle \alpha$ + xz sin$\displaystyle \beta$ + xy sin$\displaystyle \gamma$.


б) Докажите, что радикальная ось двух окружностей, заданных уравнениями такого вида, задается уравнением

p1x + q1y + r1z = p2x + q2y + r2z.


Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .