ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое игроков поочередно выкладывают на прямоугольный стол пятаки. Монету разрешается класть только на свободное место. Проигрывает тот, кто не может сделать очередной ход. Докажите, что первый игрок всегда может выиграть. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 401]
Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.
Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.
Докажите, что при повороте окружность переходит в окружность.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|