ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности. ![]() ![]() В игре "Что? Где? Когда?" разыгрываются 13 конвертов с вопросами от телезрителей. Конверты выбираются по очереди в случайном порядке с помощью волчка. Если знатоки отвечают верно, зарабатывают очко, если неверно – одно очко достается телезрителям. Игра оканчивается, как только одна из команд набрала 6 очков. Предположим, что силы команд Знатоков и Телезрителей равны. ![]() ![]() ![]() Илья Муромец встречает трёхголового Змея Горыныча. И начинается битва. Каждую минуту Илья отрубает Змею одну голову. С вероятностью ¼ на месте срубленной головы вырастает две новых, с вероятностью ⅓ – только одна новая голова и с вероятностью 5/12 – ни одной головы. Змей считается побеждённым, если у него не осталось ни одной головы. Найдите вероятность того, что рано или поздно Илья победит Змея. ![]() ![]() ![]() а) Докажите, что ограниченная фигура не может иметь более одного центра симметрии. б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии. в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M? ![]() ![]() |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 158]
С помощью циркуля и линейки постройте многоугольник с нечётным числом сторон, зная середины его сторон.
б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии. в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M?
б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |