ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что композицию чётного числа симметрий относительно прямых нельзя представить в виде композиции нечётного числа симметрий относительно прямых.

   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 1547]      



Задача 57906

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что композицию чётного числа симметрий относительно прямых нельзя представить в виде композиции нечётного числа симметрий относительно прямых.
Прислать комментарий     Решение


Задача 57960

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.
Прислать комментарий     Решение


Задача 57961

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

На сторонах треугольника ABC построены правильные треугольники A'BC и B'AC внешним образом, C'AB — внутренним, M — центр треугольника C'AB. Докажите, что A'B'M — равнобедренный треугольник, причем $ \angle$A'MB' = 120o.
Прислать комментарий     Решение


Задача 57962

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

Пусть углы $ \alpha$, $ \beta$, $ \gamma$ таковы, что 0 < $ \alpha$,$ \beta$,$ \gamma$ < $ \pi$ и  $ \alpha$ + $ \beta$ + $ \gamma$ = $ \pi$. Докажите, что если композиция поворотов RC2$\scriptstyle \gamma$oRB2$\scriptstyle \beta$oRA2$\scriptstyle \alpha$ является тождественным преобразованием, то углы треугольника ABC равны $ \alpha$, $ \beta$, $ \gamma$.
Прислать комментарий     Решение


Задача 57987

Темы:   [ Гомотетичные многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Выпуклые многоугольники ]
[ Подобные фигуры ]
Сложность: 5
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник $ \Phi$ содержит два непересекающихся многоугольника $ \Phi_{1}^{}$ и $ \Phi_{2}^{}$, подобных $ \Phi$ с коэффициентом 1/2.
Прислать комментарий     Решение


Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .