ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат. Решение |
Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 501]
Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.
Докажите, что если ABCD — вписанный четырёхугольник, то сумма радиусов окружностей, вписанных в треугольники ABC и ACD равна сумме радиусов окружностей, вписанных в треугольники BCD и BDA.
Найдите радиусы вписанной и вневписанных окружностей прямоугольного треугольника с катетом, равным 2, и противолежащим острым углом в 30°.
Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|