ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны точки A и B и окружность S. Постройте на окружности S такие точки C и D, что AC| BD и дуга CD имеет данную величину $ \alpha$.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 57944

Тема:   [ Поворот (прочее) ]
Сложность: 2
Классы: 9

Докажите, что при повороте на угол $ \alpha$ с центром в начале координат точка с координатами (x, y) переходит в точку

(x cos$\displaystyle \alpha$ - y sin$\displaystyle \alpha$x sin$\displaystyle \alpha$ + y cos$\displaystyle \alpha$).


Прислать комментарий     Решение

Задача 35803

Темы:   [ Поворот (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3-
Классы: 9,10

Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?
Прислать комментарий     Решение


Задача 55715

Темы:   [ Поворот (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Пусть две прямые пересекаются под углом α. Докажите, что при повороте на угол α (в одном из направлений) относительно произвольной точки одна из этих прямых перейдёт в прямую, параллельную другой.

Прислать комментарий     Решение

Задача 55716

Темы:   [ Поворот (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что при повороте окружность переходит в окружность.

Прислать комментарий     Решение


Задача 57945

Тема:   [ Поворот (прочее) ]
Сложность: 3
Классы: 9

Даны точки A и B и окружность S. Постройте на окружности S такие точки C и D, что AC| BD и дуга CD имеет данную величину $ \alpha$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .