Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1026]
На сторонах треугольника
ABC внешним образом
построены квадраты с центрами
P,
Q и
R. На сторонах
треугольника
PQR внутренним образом построены квадраты.
Докажите, что их центры являются серединами сторон
треугольника
ABC.
Внутри выпуклого четырехугольника
ABCD построены равнобедренные
прямоугольные треугольники
ABO1,
BCO2,
CDO3
и
DAO4. Докажите, что если
O1 =
O3, то
O2 =
O4.
|
|
Сложность: 4 Классы: 9,10,11
|
Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.
Даны прямая и две точки
A и
B по одну сторону от неё. Найти на прямой такую
точку
M, чтобы сумма
MA +
MB равнялась заданному отрезку.
Из картона вырезали два одинаковых многоугольника, совместили их и проткнули в
некоторой точке булавкой. При повороте одного из многоугольников около этой
"оси" на
25
o30
он снова совместился со вторым
многоугольником. Каково наименьшее возможное число сторон таких многоугольников?
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1026]