ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что выпуклый многоугольник имеет центр симметрии тогда и только тогда, когда его можно представить в виде суммы нескольких отрезков.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 204]      



Задача 58136

Тема:   [ Сумма Минковского ]
Сложность: 5
Классы: 9

а) Докажите, что если M1 и M2 — выпуклые многоугольники, то $ \lambda_{1}^{}$M1 + $ \lambda_{2}^{}$M2 — выпуклый многоугольник, число сторон которого не превосходит суммы чисел сторон многоугольников M1 и M2.
б) Пусть P1 и P2 — периметры многоугольников M1 и M2. Докажите, что периметр многоугольника $ \lambda_{1}^{}$M1 + $ \lambda_{2}^{}$M2 равен $ \lambda_{1}^{}$P1 + $ \lambda_{2}^{}$P2.
Прислать комментарий     Решение


Задача 58140

Темы:   [ Сумма Минковского ]
[ Свойства симметрии и центра симметрии ]
Сложность: 5
Классы: 9,10

Докажите, что выпуклый многоугольник имеет центр симметрии тогда и только тогда, когда его можно представить в виде суммы нескольких отрезков.
Прислать комментарий     Решение


Задача 58150

Темы:   [ Невыпуклые многоугольники ]
[ Наименьший или наибольший угол ]
[ Разные задачи на разрезания ]
Сложность: 5
Классы: 9,10

Автор: Хомодов А.

а) Докажите, что в любом многоугольнике, кроме треугольника, есть хотя бы одна диагональ, целиком лежащая внутри него.
б) Выясните, какое наименьшее число таких диагоналей может иметь n-угольник.

Прислать комментарий     Решение

Задача 58151

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10

Чему равно наибольшее число вершин невыпуклого n-угольника, из которых нельзя провести диагональ?
Прислать комментарий     Решение


Задача 58152

Тема:   [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10

Докажите, что любой n-угольник можно разрезать на треугольники непересекающимися диагоналями.
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .