Версия для печати
Убрать все задачи
На стороне
AB четырехугольника
ABCD взята
точка
M1. Пусть
M2 — проекция
M1 на прямую
BC
из
D,
M3 — проекция
M2 на
CD из
A,
M4 —
проекция
M3 на
DA из
B,
M5 — проекция
M4 на
AB
из
C и т. д. Докажите, что
M13 =
M1 (а значит,
M14 =
M2,
M15 =
M3 и т. д.).

Решение
На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.


Решение
Используя проективные преобразования прямой,
докажите теорему Паппа (задача
30.27).


Решение
Используя проективные преобразования прямой,
докажите теорему о полном четырехстороннике (задача
30.34).

Решение