Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 125]
|
|
Сложность: 4- Классы: 8,9,10
|
На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab. Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.
|
|
Сложность: 4 Классы: 8,9,10
|
При каких целых n сократимы дроби
а) ; б) ?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых
не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что |bc – ad| = 1.
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.
|
|
Сложность: 5- Классы: 9,10,11
|
На доске написаны N ≥ 9 различных неотрицательных чисел, меньших единицы. Оказалось, что для любых восьми различных чисел с доски на ней найдётся такое девятое, отличное от них, что сумма этих девяти чисел целая. При каких N это возможно?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 125]