ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?

Вниз   Решение


Какое из чисел больше: 3111 или 1714?

ВверхВниз   Решение


Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
  а) ровно в шесть раз;
  б) ровно в пять раз?

ВверхВниз   Решение


Функция f такова, что для любых положительных x и y выполняется равенство f(xy) = f(x) + f(y) . Найдите f(2007) , если f() = 1 .

ВверхВниз   Решение


На какие натуральные числа можно сократить дробь  ,  если известно, что она сократима и что числа m и n взаимно просты.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 275]      



Задача 60500

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9,10

По окружности радиуса 40 катится колесо радиуса 18. В колесо вбит гвоздь, который ударяясь об окружность, оставляет на ней отметки. Сколько всего таких отметок оставит гвоздь на окружности? Сколько раз прокатится колесо по всей окружности, прежде чем гвоздь попадёт в уже отмеченную ранее точку?

Прислать комментарий     Решение

Задача 60502

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9,10

Докажите, что следующие дроби несократимы при всех натуральных значениях n:
  а)  ;   б)  ;   в)  .

Прислать комментарий     Решение

Задача 60506

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9,10

На какие натуральные числа можно сократить дробь  ,  если известно, что она сократима и что числа m и n взаимно просты.

Прислать комментарий     Решение

Задача 60510

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9,10

Докажите, что равенство  (a, mn) = 1  равносильно выполнению двух условий  (a, m) = 1  и  (a, n) = 1.

Прислать комментарий     Решение

Задача 60511

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9,10

Докажите, что если  (a, b) = 1,  то  (2a + b, a(a + b)) = 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .