ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что число  22n – 1  имеет по крайней мере n различных простых делителей.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 266]      



Задача 60507

Темы:   [ Алгоритм Евклида ]
[ НОД и НОК. Взаимная простота ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Докажите, что при  m ≠ n  выполняются равенства:
  а)  (am – 1, an – 1) = a(m, n) – 1  (a > 1);
  б)  (fn, fm) = 1,  где  fk = 22k + 1  – числа Ферма.

Прислать комментарий     Решение

Задача 61035

Темы:   [ Симметрические многочлены ]
[ Кубические многочлены ]
[ Теорема Виета ]
[ Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Постройте многочлен, корни которого равны квадратам корней многочлена  x3 + x2 – 2x – 1.

Прислать комментарий     Решение

Задача 65105

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Перегруппировка площадей ]
[ Разложение на множители ]
Сложность: 4-
Классы: 6,7

Юра начертил на клетчатой бумаге прямоугольник (по клеточкам) и нарисовал на нём картину. После этого он нарисовал вокруг картины рамку шириной в одну клеточку (см. рис.). Оказалось, что площадь картины равна площади рамки. Какие размеры могла иметь Юрина картина?

Прислать комментарий     Решение

Задача 60508

Темы:   [ Простые числа и их свойства ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
Сложность: 4
Классы: 9,10

Докажите, что число  22n – 1  имеет по крайней мере n различных простых делителей.

Прислать комментарий     Решение

Задача 66091

Темы:   [ Уравнения высших степеней (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
[ Разложение на множители ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4
Классы: 9,10,11

Пусть a – положительный корень уравнения  x2017x – 1 = 0,  а b – положительный корень уравнения  y4034y = 3a.
  а) Сравните a и b.
  б) Найдите десятый знак после запятой числа  |a – b|.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .